Chronic Electroacupuncture With High-Frequency at ST-36 Promotes Gastrointestinal Motility by Regulating Bone Morphogenetic Protein 2 Secretion of Muscularis Macrophages

Neuromodulation. 2024 Feb;27(2):321-332. doi: 10.1016/j.neurom.2023.03.013. Epub 2023 May 26.

Abstract

Background: Electroacupuncture (EA) at Zusanli (ST36) is an alternative treatment for several gastrointestinal motility disorders; however, the exact mechanism is unconfirmed. We aimed to show the potential effects of EA on muscularis macrophages (MMφ), the bone morphogenetic protein (BMP)/BMP receptor (BMPR)-Smad signal pathway, and enteric neurons in diabetic mice. This may provide fresh insight into ways EA affects gastrointestinal motility.

Materials and methods: C57BL/6J healthy adult male mice were randomly divided into five groups: regular control group, diabetes group, diabetes with sham EA group (acupuncture only), diabetes with low-frequency EA group (10 Hz), diabetes with high-frequency EA group (HEA) (100 Hz). The stimulation lasted eight weeks. Gastrointestinal motility was assessed. We identified M2-like MMφ in the layer of colonic muscle by flow cytometry. Western Blot, real-time polymerase chain reaction, and immunofluorescent staining were also used to determine the MMφ, molecules in the BMP2/BMPR-Smad pathway, and PGP9.5, neuronal nitric oxide synthase (nNOS) expression of enteric neurons in the colon of each group.

Results: 1) HEA improved the gastrointestinal motility (gastrointestinal transit time, defecation frequency) of diabetic mice. 2) HEA reversed the decreased proportion of M2-like MMφ and expression of the CD206 in the colon of diabetic mice. 3) HEA restored the downregulations of BMP2, BMPR1b, and Smad1 in the BMP2/BMPR-Smad pathway and increased downstream enteric neurons marked by PGP9.5, nNOS in the colon of diabetes mice.

Conclusions: HEA might promote gut dynamics by upregulating M2-like MMφ in the colon of diabetic mice, which in turn leads to the accumulation of molecules in the BMP2/BMPR-Smad signaling pathway and downstream enteric neurons.

Keywords: Bone morphogenetic protein 2; electroacupuncture; enteric nervous system; gastrointestinal motility; macrophages.

MeSH terms

  • Acupuncture Points
  • Animals
  • Bone Morphogenetic Protein 2
  • Diabetes Mellitus, Experimental* / therapy
  • Electroacupuncture*
  • Gastrointestinal Motility / physiology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Muscles
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Bone Morphogenetic Protein 2